

Institut de Mathématiques et de Modélisation de Montpellier UMR 5149 – I3M

YALES2BIO: a general multiscale solver for

blood flows

Franck Nicoud* Professor at Polytech'Montpellier Mechanical Engineering Dpt Simon Mendez Researcher at CNRS/I3M Chief architect

* and the other people from the YALES2BIO team

WHERE I COME FROM

My two scientific lifes

IN MONTPELLIER

Laboratory of Mathematics and Modelling of Montpellier University

CARDIO-VASCULAR BIOMECHANICS - 1ST TALK

IN TOULOUSE

European Center for Research and Advanced Training in Scientific Computing

COMBUSTION INSTABILITIES - 2ND TALK

November, 2014

ABOUT BLOOD

Composition

- Plasma (55%)
- Red Blood Cells (≈44%)
- White Cells
- Platelets

- 4-5 millions of Cells per mm³ ...
- Not a simple fluid: shear-thinning for viscosity ...

ABOUT BLOOD

ABOUT RED BLOOD CELLS

Mohandas, *Blood*, 2008.

November, 2014

SIMPLE CELLS, COMPLEX MEMBRANE

Mechanics : resistance to - Area change

- Bending
- Shear

BLOOD FLOWS RELATED QUESTIONS

• Fluid mechanics point of view

- Blood flow characteristics: how do pressure and velocity components evolve over space and time ?
- Motion of solid materials (arteries, valves, stent, ...) interacting with blood
- > Associated <u>constraints</u> (pressure, viscous)
- Medical point of view
 - Aneurysm rupture risk (leads to (lethal) hemorrhage) ,
 - Vascularization of the different parts of the arterial tree
 - Thrombus formation (leads to (lethal) emboli)
 - Hemolysis rate (destruction of red blood cells, leads to anemia)

OUR LONG-TERM OBJECTIVE AT I3M

The study of blood flows using numerical simulations, with the application to the optimization of biomedical devices

Can we optimize the hydrodynamic and thrombogenic performances while minimizing hemolysis ?

SOME BLOOD FLOWS-RELATED CHALLENGES

• Generally speaking :

- > multi-scale flows (10 μ m 10 cm)
- fluid-structure interactions [Blood/arteries/valves OR Plasma/cell membranes]
- Macroscopic scale :
 - > 3D complex geometries ; complex rheology (shear thinning, thixotropic)
 - > Pulsated BCs and transitional (neither laminar nor turbulent) flow regimes

• Microscopic scale :

- Huge number of cells interacting
- Highly deformable cells
- **Others** : Biochemistry, electric coupling, ...

EXAMPLE OF COMPLEX MOVING GEOMETRIES

Heart and Aorta arch over time Sagittal cut (CT scan - Moreno – CHU Toulouse) Heart and Aorta at fixed time 3D view (CT scan - Moreno – CHU Toulouse)

November, 2014

THE YALES2BIO PROJECT

- In-house solver www.math.univ-montp2.fr/~yales2bio
- **Data structure** inherited from the HPC YALES2 solver (CNRS GIS SUCCESS)
 - dedicated to the computation of turbulent reacting flows
 - www.coria-cfd.fr/index.php/YALES2
- Main features :

- Methodologies adapted to micro and macro scale applications
- fluid-structure interactions (moving meshes; Immersed boundaries)
- Unstructured meshes (complex geometries)
- High order, low dissipative schemes (transitional flows)
- Massively parallel (good scaling up to 10000 cores)
 November, 2014
 EMALCA, Puerto Madryn

- Transitional hemodynamics in a realistic heart
- Fluid-structure interaction for Micro-scale computations
- Fluid-structure interaction for Macro-scale computations

NAVIER-STOKES EQUATIONS

- The 3D PDE's governing the flow of a constant density (ρ) fluid are:
 - Mass conservation (continuity):

$$\frac{\partial u_i}{\partial x_i} = 0$$

Momentum:

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right], \quad \text{with} \quad i = 1, 2, 3$$

- Remarks:
 - \succ p is pressure and v is the kinematic viscosity (constant if Newtonian fluid)
 - > The non-linear term $u_j \frac{\partial u_i}{\partial x_j}$ arises from the inertia effects ; if large enough, it is responsible for **turbulence** generation

REALISTIC FLOW IN A HUMAN LEFT HEART

- Flow characteristics:
 - Length scale = 1 10 cm
 - **Reynolds** number = 1000 5000

• Flow most probably transitional: neither laminar nor turbulent

FUNCTIONAL IMAGING OF THE HEART

- Only the intra-cardiac blood flow is computed; the motion of the cardiac muscle is deduced from medical imaging.
- Rely on the OCFIA chain developed within a former ANR research project (<u>http://www.ocfia.org/</u>) with University Hospital of Toulouse
- Combining OCFIA and the flow solver YALES2BIO :

Chnafa et al., Comp. & Fluids, 2014

November, 2014

4D MESH FROM MEDICAL IMAGING

Time: 0 ms

Aorta from CT scan (Moreno – CHU Toulouse)

Left heart from CT scan (Chnafa – I3M Montpellier)

November, 2014

ABOUT TURBULENCE

• Turbulence is present in most of the flows met in the everyday life (clouds, shore breaks, wind, airplane wakes, ...)

ABOUT TURBULENCE

• Turbulence is present in most of the flows met in the everyday life (clouds, shore breaks, wind, ...)

IS TURBULENCE PRESENT IN

CARDIAC HEMODYNAMICS ??

MODELING TURBULENCE

- Direct Numerical Simulation
 - > Solve all the scales No model required
 - > complexity increases like (Reynolds number)^{9/2}
- Reynolds-Averaged Navier-Stokes
 - > Model all the scales (e.g.: k- ε model)
 - > Hardly predictive; no suitable for transitional flows
- Large-Eddy Simulation offers an alternative view

LARGE-EDDY SIMULATION

- The filtered Navier-Stokes equations are solved
 - The largest scales are computed directly
 - The smallest scales (subgrid scales) are modeled so that their effect on the largest scales dynamics is accounted for
- Requires an efficient, HPC compatible and low dissipative flow solver.
- YALES2BIO (<u>www.math.univ-montp2.fr/~yales2bio</u>) gathers these properties

November, 2014

SUBGRID SCALE VISCOSITY

Sigma model (Nicoud et al., 2011)

FLOW VISUALIZATION

In-plane and vertical velocity

Time: 0 ms

Vorticity modulus

Chnafa et al., Comp. & Fluids, 2014; Chnafa et al., Ed. A. Quarteroni, 2014

November, 2014

The **Q-criterion** allows

visualizing vortices in the blood flow. The point of view is also rotation around the heart in the movie.

$$Q = \frac{1}{2}(\Omega^2 - S^2)$$

(Jeong & Hussain 1995)

Chnafa et al., TSFP, 2013

CYCLE TO CYCLE VARIATIONS

- Approx. **50 cycles** were computed
- Vertical velocity at four probes over 6 cardiac cycles

CYCLE TO CYCLE VARIATIONS

- Approx. **50 cycles** were computed
- Velocity vectors at the same instant at 3 different cycles

PHASE-AVERAGED FLOW

- Turbulence is not only randomness
- Phase-averaging the numerical results allows retrieving a large recirculation zone within the left ventricle

PHASE-AVERAGED FLOW

- Phase-averaging the numerical results allows retrieving a large recirculation zone within the left ventricle
- Coherent with observations from medical images

MRI Eriksson et al. Eu. Heart J. (2012)

Echocardiography Hong et al. Cardio. Imag. (2008)

KINETIC ENERGY IN THE VENTRICLE

- The KE of the mean flow large at early systole and diastole
- The KE of the fluctuations large at late diastole
- Intensity of the fluctuations of order 30 % at late diastole

TIME-FREQUENCY ANALYSIS

- The spectra show activity over a much wider frequency range at late diastole
- Looks pretty much like intermittent turbulence
- Only LES (or DNS but not RANS) can be predictive in this situation

- Transitional hemodynamics in a realistic heart
- Fluid-structure interaction for Micro-scale computations
- Fluid-structure interaction for Macro-scale computations

MICRO-SCALE COMPUTATIONS

- Objective: Red blood cells under flows
 - in complex domains 📃
 - and at « high » Reynolds number

Abkarian et al. BM 2008

WHICH METHOD ?

WHICH METHOD ?

Non-conforming mesh method

FRONT-TRACKING – IMMERSED BOUNDARIES

- Membrane discretized by Lagrangian markers
 - ✓ massless membrane
 - $\checkmark\,$ convected by the fluid velocity

$$\frac{d\overrightarrow{x_m}}{dt} = \overrightarrow{u_f}$$

• From the membrane position: forces applied on the fluid

Peskin 1972, 2002, Unverdi & Tryggvason 1992, Bagchi et al.

FRONT-TRACKING – IMMERSED BOUNDARIES

• Navier-Stokes forced by the membrane forces

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] + \sum_m f_i^m$$
Navier-Stokes

 To each marker on the membrane corresponds a Dirac force which must be properly accounted for when solving for the fluid

REGULARIZATION

MMERSED BOUNDARY METHOD

Peskin, AM 2002, Charrier et al. JSA 1993, Eggleton & Poppel PF 1998, Pinelli et al. JCP 2011, Yazdani & Bagchi JFM 2013

November, 2014

VALIDATIONS

Mendez, Gibaud & Nicoud, J. Comp. Physics, 2014, ; Martins Afonso, Mendez & Nicoud, J. Fluid Mech., 2014 November, 2014 EMALCA, Puerto Madryn 39

OPTICAL TWEEZERS: PRINCIPLE

Measurement apparatus for cell mechanics

OPTICAL TWEEZERS: SIMULATION

- Biconcave red blood cell •
- Mechanical properties modeled with a Skalak law (Es = $3.7 \mu N/m$) •

OPTICAL TWEEZERS: RESULTS

APPLICATION TO SIZING IN A CYTOMETER

APPLICATION TO SIZING IN A CYTOMETER

Counting: 1 pulse = 1 red blood cell

Sizing: Pulse size ~ Cell volume

November, 2014

INFLUENCE OF THE CELL TRAJECTORY

2 identical cells at 2 different initial locations

Movie by E. Gibaud (PhD student at I3M)

Pulse characteristics are **not** related only to Cell volume

- Transitional hemodynamics in a realistic heart
- Fluid-structure interaction for Micro-scale computations
- Fluid-structure interaction for Macro-scale computations

ABOUT ARTIFICIAL ORGANS

- To be able to represent complex thin membranes (viscoelasticity, contact), a dedicated solid mechanics solver should be used
- Keeping the same numerical strategy (FT-IBM), the YALES2BIO fluid solver was coupled to the LMGC90 solver for complex rheology and contact (work with the LMGC lab in Montpellier)

EXAMPLE WITH AORTIC VALVE

Movie by J. Sigüenza (PhD student at I3M)

AN ARTIFICIAL HEART

Syncardia heart (Slepian et al., J. Biomech. 2013)

Abiocor, Carmat hearts,...

AN ARTIFICIAL HEART

Syncardia heart (Slepian et al., J. Biomech. 2013)

Carmat heart

HALF AN ARTIFICIAL HEART

A first attempt in half the system: unstructured LES + flexible membrane

SIMPLIFYING THE GEOMETRY

• A domain mimicking the left heart flow (only half of the heart is considered).

MOVIE PRESENTATION

November, 2014

MOVIE SHOWING 5 CYCLES FROM THE START

TIME OF RESIDENCE (8 CYCLES)

RESIDENCE TIME – STATISTICS

- In this design, 67% of the red blood cells leave the domain after staying less than 1.5 s.
- 5% of the RBCs stay 3.5 seconds and more

November, 2014

MORE INFORMATION ...

- http://www.math.univ-montp2.fr/~yales2bio/
 - Publications
 - People involved
 - Other applications and movies

- Licensing:
 - YALES2BIO may be made freely available to any research team upon simple request [INSERM & CHU Toulouse, Univ. Avignon]
 - Industrial licenses can be setup on a case-by-case basis [Horiba Medical]

Thank you for your attention

http://www.math.univ-montp2.fr/~yales2bio

We thank for financial support:

November, 2014